Some expressions from alternate Rational Number Series

Author
Ganesan Kirtivasan, AGM(A,C\&IT), RDCIS, SAIL, Ranchi, Jharkhand - 834 002, India.

Abstract

The author had submitted a paper on 'Rational Number Series' ${ }^{[1]}$. After this, papers on 'A few expressions from Rational Number Series ${ }^{[2]}$ and 'Some more expressions from Rational Number Series' ${ }^{[3]}$ were submitted. Later, the Rational Number Series was looked at, in an alternate way. A few expressions were made with alternate Rational Number Series. These expressions are outlined in this paper.

Keywords

Expressions, rational number series, alternate rational number series;

Introduction

The expression $\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1)}{m n}$ was used to generate many expressions which are interesting. The papers ' A few expressions from Rational Number Series' ${ }^{[2]}$ and 'Some more expressions from Rational Number Series ${ }^{[3]}$ have expressions based on $\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1)}{m n}$. Later $\frac{m n}{(m n+1)}-\frac{(m n-m)}{(m n-m+1)}$ (an alternate Rational Number Series) was tried. The expressions based on $\frac{m n}{(m n+1)}-\frac{(m n-m)}{(m n-m+1)}$ are presented in this paper.

Expression 1

$$
\left(\frac{m n}{(m n+1)}-\frac{(m n-m)}{(m n-m+1)}\right)=\left(\frac{1}{(m n-m+1)}-\frac{1}{(m n+1)}\right)
$$

Expression 2

$$
\left(\frac{m n}{(m n+1)}-\frac{(m n-m)}{(m n-m+1)}\right)=\left(\frac{(m n-m)!}{(m n-m+1)!}-\frac{m n!}{(m n+1)!}\right)
$$

Expression 3

$$
\sum_{1}^{\infty}\left(\frac{m n}{m n+1}-\frac{m n-m}{m n-m+1}\right)=1
$$

Expression 4

$$
\sum_{n=1}^{m}\left(\frac{m n}{(m n+1)}-\frac{(m n-m)}{(m n-m+1)}\right)=\frac{m^{2}}{1+m^{2}}
$$

Expression 5

$$
\sum_{n=1}^{m}\left(\frac{(m n)^{k}}{(m n+1)^{k}}-\frac{(m n-m)^{k}}{(m n-m+1)^{k}}\right)=\frac{m^{k}}{\sum_{l=0}^{k}\binom{k}{l} m^{k}}
$$

Expression 6

$$
x \int_{1}^{\infty}\left(\frac{x n}{(x n+1)}-\frac{(x n-x)}{(x n-x+1)}\right) d x+(x-2) \int_{1}^{\infty}\left(\frac{(x-2) n}{((x-2) n+1)}-\frac{((x-2) n-(x-2))}{((x-2) n-(x-2)+1)}\right) d x=x \int_{1}^{\infty} \frac{2}{(x n+1)(x n-1)} d x
$$

Conclusion

In total six expressions have been submitted in this paper. The concept of Alternate Rational Number Series can be more widely used.

References

1. Kirtivasan Ganesan, Rational Number Series, June 2019 http://www.jetir.org/papers/JETIR1907J15.pdf (www.jetir.org (ISSN -2349-5162))
2. Kirtivasan Ganesan, A few expressions from Rational Number Series, December 2020 http://www.jetir.org/papers/JETIR2012024.pdf (www.jetir.org (ISSN -2349-5162))
3. Kirtivasan Ganesan, Some more expressions from Rational Number Series, December 2020 http://www.jetir.org/papers/JETIR2012337.pdf (www.jetir.org (ISSN -2349-5162))
